Applying Formal Methods and Object-Oriented Analysis
to Existing Space Shuttle Software*

Betty 1. C. Chengt Brent A uernheimert
Michigan State University California State University, Fresno
1)epartment of Computer Science Department of Computer Science
East Lansing, M| 48824-1027 Fresno, CA 93740-0109
chengbOcps.msu. edu brent._auernheimer@CSUFresno.edu
Abstract

Correctness is the most important issue in safety-critical software control systems. Unfortunately,
failures in critical segments of software for medical radiation treatment, communications, and defense
are familiar to the public. Such incidents motivate the use of software development techniques
that reduce errors and detect defects. The benefits of applying forma] methods in requirements-
driven software development (forward engineering) are well-documemted; formal not ations are precise,
verifiable, ancl facilitate automated processing. This paper describes the application of formal
methods and object-oriented modeling to reverse engineering, in which formal specifications are
developed for existing, or legacy, code. in this project, several layers of formal specifications were
constructed for a portion of the NASA Space Shuttle Digital Auto Pilot (D AP), a software module
that is used to control the position of the spacecraft through appropriate jet firings. ‘I'he reverse
engincering process was facilitated by the Object Modeling Technigue (OMT), an informal software
development approach that uses graphical notations to describe software requirements.

1 Introduction

Correctness is most important and necessary in safety-critical software control systems [1], Critical
software failures in medical radiation cquipment [2], communication networks, and defense systems are
familiar to the public. The large number of software malfunctions regularly reported to the software
engineering community [3], new statutes concerning liability for such failures, and a recent National
Research Council Aeronautics and Space Engincering Board Report [4], additionally motivate the use

of software development techniques that reduce errors and detect defects.

*The work described in this paper was carricd out at the Jet Propulsion Laboratory, California Institute of Techinology,
and was sponsored by the National Aeronautics and Space Administration. Additionally, the authors’ work on this project
wassupported by NASA/A SEE Summer Facul ty fellowships. A preliminary version of this paper was presented at the
NASA/Goddard Software Enginecring Workshop, Greenbelt, Maryl and, December, 1993.

1This author is also supported in part by NSF grant C CR-9209873.

IThis author gratefully acknowledges)¢ Software Enginecring Institute at Carnegie Mellon University for support as

a Visiting Scientist, Spring 1994.

The benefits of using formal methods in requirements-d riven software development (forward engincer-
ing)are well-documcmted [5, 6]. A forma method is characterized by a formal specification language
and a set of rules governing the manipulation of expressions in that language. Traditionally, formal
methods have been used in the early phases of development, in order to describe the requirements of a
soft ware system or component. Using formal specification languages facilitates the carl y evaluation of
a software design and verification of its implementation through the use of formal reasoning techniques
[7, 8]. A formal specification can be manipulated, using automated techniques, to enable the designer to
assess the consistency, completeness, and robustness of a design before it is implemented. Each step in
the development process can be justified by mathematical proof, thus minimizing the number of errors
due to misinterpretation and ambiguity.

Re-engineering is the process of examining, understanding, and modifying a system with the intent
of implementing the system in a new form [9]. Re-engineering of existing, or legacy, code is preferred
to redeveloping the software from the origina requirements in order to preserve functionalist y that has
been achieved over a period of time and to provide continuity to current users of the software [1 O].
Onc of the most diflicult aspects of re-engineering is the recognition of the function of the existing
programs. Iteverse Engincering is the process of constructing high level representations from lower
level instantiation of an existing systcm. Common reverse engineering methods used by software
m aintenance engineers are observation (for example, test case analysis) and examination of source code.
These techniques are often tedious and error-prone.

Onc way totake advantage of thebenefits of formal methods in legacy systems, isto reverse engineer
the existing program code into formal specifications [11,12, 1 3]. The resulting formal specificat ions
can then be used as the basis for change requests and the foundation for subsequent verification
and validation [1-4]. Considering the high cost of re-implementationand the need to preserve critical
functionality, reverse enginecring of code into formal specific.ations offers an aternative to traditional
ad hoc approaches to maintaining safety-critical systems.

A highly visible example of a legacy system is the software for the NASA Space Shuttle, which was
conceived in the early 1970s and has been operational for over ten years [4]. Onc component of the
Shuttle software is the flight software, which provides guidance, navigation, and control for the Space

Shuttle while it is in orbit. The navigation function determines where. the shuttle is, the guidance

function determines where it should go next, and the control function determines how to effect the next

move. While the vehicle is in orbit, the Digital Auto Pilot (11A]’) software determines attitude and
translation] adjustments, based on astronaut selections. Attitude refers to the rotational position of
the vehicle in terms of roll, pitch, and yaw, and traenslation refers to the z,y,and 2 coordinates of
the vehicle. Figure 1 gives a pictorial representation of translation and attitude as they relate to the

position of the shuttle.
roll

oitch g/ \Tr—/——%

y4

yaw

Figure 1: Shuttle Translational and Rotational Axes

Presently, the Space Shuttle flight software project has a well-ddincd process for managing require-
ments evaluation, This process is responsible for ensuring that requirements generated by an engineer are
consistent, implementable, and will solve the problem at hand. However, this process does not in clude
a well-dcfind set of anaytical methods and techniques [1 5, 14]. When a change is needed, a detailed
description of the reasons for the change, known as a change request (CR), must be constructed before
the system can be re-engineered to include the changes. Next, the requirements analyst performs an in-
depth analysis of the CR, guided by a list of generic error categories, followed by a formal inspection of
the CR by severa representatives of the software project, including the author of the CR, requirements
analyst, developer, verifier, and so on. Each potential error, termed an issue, that is identified by
the requirements analyst or the inspection process remains ‘(open” until a clearly-described solution
has been developed, at which point the issue is considered “closed .“ When all inspect ions have been
conducted for a CR andall issues have been closed, a CR is ready for implementation. At this point,
a baseline for the project, a milestone that describes the current system with the accepted changes, is

creat ed and scheduled for implement at ion.

The analysis step of the CR process involves studying, understanding, and analyzing the contents of

a CR. Three major deficiencies in this process have been identified by requirements analysts [1 5]. First,
there is no specific methodology for conducting the analysis of the CR. Scc.end, thereare no specific
completion criteria to indicate whensuflicient information has been obtained for the CR. ‘1'bird, there
is no specific structured mechanism for documenting the results of the analysis process. Moreover, since
there is no structural approach for documenting the analysis, the understanding of the CR developed
by the requirements analyst is not formally recorded for future use [1 5].

This paper describes a project that applies formal methods and ob jcc.t-oriented analysis to asubsys-
tem of the DAP of the Shuttle, known as the I'base Plane, which determines whether jet firings arc
needed to achieve translational or rot ational acceleration in a direction specified by the crew. More
specificall y, the Phas e P1 ane module was reverse engincered through the development of formal speci-
fications that capture the details of Phase.Plane requirements.Inorder to facilitate the specification
process, a pictorial description of the subsystem was constructed using the Object Modeling Technique
(OMT) [16], an informa software development approach that uses graphical notations to describe
software requirements,

The remainder of the paperisorganized as follows. Secction 2 gives a brief introduction to formal
methods and object-oriental analysis techniques. Section 3 describes the Phase Plane project, including
sample specifications anda discussion of the object-oriented analysis. lessons learned from this project
are described in Section 4, with a summary of the benefits of constructing formal specifications and
t hie use of ob ject-oriented analysis techniquesin a reverse engineering project, Finaly, conclusions and

future investigations are described in Section 5.

2 Background Material

This section briefly defines and motivates the use of formal methods. Also, the benefits of object-oriented

analysis is discussed.

2.1 Formal Methods

A formal method consists of a formal specifica tion language and a set of formally defined inference

rules [7]. The specification language is used to describe the intended system behavior, and the inference

rules provide a sound method for reasoning about the specifications. In general, forma methods in

soft ware development provide man y benefits for forward engineering [5, 7]. First, it forces the designer
to be thorough in the development and the documentation of a system design. Second, the developer
is able to obtain precise answers to questions posed about the properties of thesystem. ‘1'bird, the
developer is able to use automated reasoning to determine the correctness of the system (or asafetly-
critical component of the system) with respect to its specification.

Formal reasoning can be divided into two approaches. program verification and program synthesis.
Program verification is the process of checking the semantics of program text against its specification.
A program whose semantics satisfy its specification is said to be correct with respect to the specifi-
cation.Program synthesis refers to formal techniques for systematically developinga program from a
specification, such that the correctness of theresulling program (with respect to its specification) is

inherent in the development process itself [17].

2.2 Object-Oriented Analysis

Software requirements define the objectives of a software development effort. They provide the basis
by which the quality of the end-product is mecasured and guide the design of the software architecture.
Thereare a variety of approaches to requiremnents analysis, many of them in the broad category known
as object-oriented requirements analysis (OOA)[1 G). An object is a self-contained module that includes
both the data and procedures that act on that data. The emphasis on objects and their interactions
in 00A is in contrast to the more traditional approach to software development, which focuses on
proced U rcs,

Most 00A techniques begin by a careful assessment of the natural language description of the
problem. A simple first step in developing an 00A model is to extract the nouns from the problem
description. Many of these nouns will share common properties andinay be described as instances
of types, or classes. A class is a collection of objects that have common use. For example, Galileo,
Voyager, and Magellan are all of the class spacecraft, and Venus, Mars, and Mercury are all of the
class planet. Some classes, referred to as subclasses are specializations of other classes. For example,
interplanetary spacecraft is a subclass of spacecraft. In this manner, 00A is usedto organize types into

a class hierarchy based on aisa (asin ‘{an X isa Y*) rclationship.

It may be natural to think of an object as composed of other objects. For example, an interplanetary
spacecraft may contain nuimerous jets, a guidance and navigation control system, and a probe to study
a planet’s atmosphere. This dependence introduces an additional dimension of the class hierarchy,
namely, the Partof relation. The parts of an object are often called its atiributes.

As nouns can be used to identify candidate objects (and therefore, classes), verbs typically describe
interactions between objects, therefore making them good candidates for operations, or methods, acting
upon classes. Some verbs may describea service for a particular class of ob jects, such as fire in the
phrase “fire the jets.” Other verbs may describe a possible state of an object, such as coast in the phrase
“the spacecraft begins to coast.” Therefore, verbs help to define the operations of a class as well as the
dynamic bchavior of the system as a whole.

in the carly stages of software development, including object-oriented approaches, diagrams arc
frequently used to describe requirements and guide development. The OMT []6] notation combines
three complementary diagramming notations in order to document system requireinents: object models,
dynamic modecls, and functional models. The elements of asystem that define its overall architecture
are given by an object model, whose notation is similar to that used for cmtity-relationship diagrams
used in database design. An object model determines the types of objects that can exist in the system
and identifies allowable relationships among objects. As a result, the object model constrains the sct
of possible states that thesystem may enter. A dynamic model describes valid transitions between
systemstates and indicates the conditions under which a state change may occur. Dynamic models are
described in terms of state transition diagrams, A functional modelis a data flow diagram that describes
the computations to be performed by the system. Collectively, these threetypes of diagrams are used to
modecl the properties of the system, including flow of control, flow of data, patterns of dependency, time
sequence,and name-spa,cc relationships. The OMT approach is appealing since it offers multiple views
of software requirements,and sin ce asingle not at ion is not forced to describe many different perspectives

of a given system, the notation for cachtype of diagram is simpleto usc and easy to understand.

3 Project Description

Due to the criticality and the volume of flight systein software, many recent flight system projects

arc incorporating formal methods into the software development process [1, 6]. in order to apply

formal methods to legacy flight software, however, reverse engincering is needed. The project described

herein is associated with a larger multi-NASA site project to apply forma methodstoa portion of
the flight control software for the NASA Space Shuttle [14, 15]. The project described here uses
formal methods and object-oricntwl analysis to reverse engineer the Phase_ Plane module, which is
the subsystem that provides automatic attitude control of the Shuttle. The criteria that led to the
sclection of Phase Plane included finding a module whose requirements were difficult to understand
and which will likely be the target of future critical change requests. The objective of this project is
to provide multiple representations of the requirementsand functionality of the system, which can be
used to facilitate automated verification and validation of future changes and to facilitate re-engineering
tasks.

Two maor tasks were performed in the development of the formal specifications of the Phase Plane
high-level requirements. First, a concise description of the origina requirements of the module was
acquired. ‘I’his information was obtained from the Functional Subsystem Softwarc Requirements (FSSR)
document [18] (also known as l.evel Crequirements, consisting largely of “wiring” diagrams), the Guid-
ance and Control Systems Training Manual [19], source code, informal design notes, and discussions with
Shut tle software personnel. The resulting description was used to develop an “as-built” (implementation-
biased) formal specification, capturing the functionality depicted in the FSSR wiring diagrams.

Second, in order to obtain a more abstract forinal specificationand climinate the irnplemnentation bias
present in the as-built layer, OMT diagrams were developed to represent the integral information from
the low-level specifications. These diagrams facilitated the abstraction process andled to the higher-level
specifications. This process of developing a level of formal specification, followed by the construction
of the corresponding OMT diagrams, led to the identification of the high-level, critical requirements of

the Phase_Plane module. Sample specifications and OMT diagrams arc described bhelow.

3.1 Phase Plane

The Reaction Control System (RCS) Digital Auto Pilot system (DAY) achieves and maintains attitude
through an error correction method, which involves jet firings. Aititudc refers to the rotational position
of the vehiclein terms of roll, pitch, and yaw. In order to make the Shuttle maintain a specific attitude,

the crew specifies two values: attitude deadband and rate deadband. A ttitude deadband refers to how

much drift (positive or negative) will be tolerated in any axis before jets are firedto correct the error.
Rate deadband refers to the alowable rate changes of the attitude (positive or negative) before jet firings
are required to null the error. Figure 2 gives a high-level view of the 1)A}’. The Stute Estimator gives
the current attitude, taking into consideration spacecraft dynamics. This information is supplied to
the Phase_Plane component, which compares the attitude and rate errors (the rate of attitude change)
with the desired (deadband) values specified by the crew.

DIGITAL AUTOPILOT (DAP)

Desired |
state i

State

Phase Plane Jet Selection

| Spacecraft
Logic Logic

Dynamics 7

Estimated
state

State
Estimator

|
|
I
I
1
|
|
|
|
L

Figure 2: High-level view of 1)Al’, including the Phase_Plane module

Figure 3 gives a simplified graphical representation of the phase planc |1 8]. A phase plane is
represented as a graph plotting spacecraft rate errors against attitude errors for one rotational axis,
with a “box” (with parabolic sides) drawn aroundthe center. A separate phase plane exists for each
of the vehicle rotation axes (roll, pitch, and yaw). in an attitude hold situation, the error plot cycles
around thezero error point with jets firing each time the limits of the “hex” are exceeded. This activity
is known as “limit cycling” or “deadbanding”. ThePhase_Plane module generates positive or negative
rate commands on an axis by axis basis, wherethe JetSelect component determines which jet(s) to
fire (Vhe topic of thelarger multi-NASA site project [1 5]). The shaded coast regions depict, situations,
where the Shuttle needs no corrective action. The remaining regions are known as hysteresis regions,
wlere external factors, such as positive (negative) acceleration drift, propellant usage, inertia, time lags
between firing commands, and sensor noise, arc taken into consideration in order to preclude unnecessary
jet firings, As such, the hysteresis regions are defined asa function of jet firings.

In Figure 3, the dashed lines outline the deadbanding path, whine cinch “()” indicates points that the

Shuttle is changing state with respect to thruster firings; in this graph, the Shuttle transitions through

+ rate error
[}

+ rate deadband

+ attitude
¥ deadband

» + attitude error

- atftitude /

deadband

- =g Deadbanding Path
N

- rate deadband NN Coast Region

D Hysteresis Region

Figure 3: Graphical depiction of the phase plane, with coast and hysteresis regions [18]

six different states. As long as the current position is within the limits imposed by the deadbands, the
deadband constraints are satisfied and no jets will be commanded to fire. Figure 4 gives an explanation
of the diflferent states in which the Shuttle can be while it is deadbanding [19].

The requirements for the Phase_Planemodulc are described in the I'SSR document that includes a
simplified wiring diagram (see }igure5), which identifies the input and out put values, as well as severa
tables describing the calculation for the boundaries of the phase plane and its different regions. For
historical reasons, the FSSR descriptions use notation commonly used for circuit design, even though
the system being described is software-based. The solid lines represent data flows and dashed lines
represent control. In Figure 5, the dashed line indicates that the enable flag must be set by the crew in

order to enable the autopilot mode.

3.2 Formal Specifications

The software was formally specified using the 1'VS (Prototype Verification Systems) terminal-based,
formal specification tools [20] (e.g. syntax checker andtheorem prover), which are under continuing

development at SRI International. A PVS specification comprises a collection of theories. Kach theory

1! No jetsfire.Since the rate error is positive, the attitude error will grow in a positive
direction,

2. Jets fire to nullify the positive rotational rate.

3. Jets stop firing when the deadband line is crossed, but a little negative rate errors is
inevitable..

4. No jets fire. With a negative rate error, the attitude error will also drift negatively.
5. Jets fire to nullify negative rate error.

6. Jets stop firing, but residual positive rate error causes attitude error to go positive
again and tile cycle repeats.

Figure 4: Explanation of deadbanding states [19)

consists of a signature for the type names and locally declared constants, as well as the axioms,
definitions, and theorems associated with the signature,

in order to obtaina specification of the high-level requirements from the existing documentation and
source code, several layers of specifications were constructed, where eachlayer is more abstract than
the preceding layer. Specification of a system through increasingly detailedlevels of abstraction isa
well-established method [7, 21]. Fromthe forward engincering perspective, the software development
process proceeds in a top-down fashion. Typically, abstract, Iligh-level specifications arc used to establish
the system inputs, outputs, and basic functionality; critical correctness requirements that the system
must satisfy arestated at this level and become the criteria by which the specification is judged to
be correct, Mid-level specifications introduce details of functionality and data structure requirements
that may constrain the eventual implementation of the system; change requests for modules will most
likely be addressed in these specifications. A 10W-1CVCL1 specification iSa straightforward representation
of a particular implementation, which may be used to automatically generate source code [8, 17] or
verification conditions for programmer-produced code [1].

In contrast, performing reverse engincering of the Phase Plane project , involved a mixture of bottom-
up with a top-down approach. This project exploredthe use of forma specifications to derive require-
ments that are more detailed and precise than an English paragraph, and less obscure than optimized
source code. Specifications were developed in the following order: low-, high-, and mid-level, High-level

natural language descriptions of this portion of the Shuttle DAP were available, as was source code.

enable

|

|
previous thruster commands }

f
rate error |

|

ﬁ .
attitude error Control Logic O.N | thruster commands

for /
—

deadband limits Phase Plane OFF
rate limits

Figure 5: simplified wiring diagram for the Phase.Plane module [18]

Given thetwotypes of documentation that varied in the amount of detail, we started with the low-level
specifications to ensure that an accurate description of the current functionality was captured. Next, we
used the high-level descriptions from the Crew Training Manual and constructed several OMT' diagrams
to assist in the specification of high-level requirements. Finaly, in order to bridge the information gap
bet ween the low-level, implementation _gpecific and the high-level specific.ations, we constructed a set
of mid-level specifications. We used the OMT diagrams to introduce abstraction into the low-level
specifications, andweused he high-level specifications to identify critical properties applicable to the
overall component in order to construct themid-level specifications. The remainder of this section
describes in more detail the specification process and includes example specifications.

The low-level formal specification of Phase-plane was developed from the existing source code,
the Crew Training Manual [19], and the low-level wiring diagrams, This specification mirrored the
functionality of the existing system, but did not offer an abstract view of the module’s functional
requirements. Due to space constraints, the low-level specifications are omitted but can be found
in[22].

A high-level “black-box” specification was thendeveloped, which did not include implementation

details. At this level, it was straightforward to state abstract properties that any software implementing

Phase-Plane must possess. The high-level specification describes properties that characterize the
Shuttle’s position in terms of attitude and rate deadband values. |If the Shuttle travels outside the
specified regions, then the jets need to be fired to bring the Shuttle back into the phase plane region.
Several data types were specified in the 10W-1CVCI specifications and are used for both the high- and

mid-level specifications; they are given in Yigure 6 for clarity purposes.

nonnegative-real: TYPE ={X: reallx »= O}
rate-error-type: TYPE = real % unite are degrees/second
rate_deadband_type: TYPE = non_negative_real
attitude_deadband_type: TYPE = non-negative-real
attitude-error-type: TYPE = real % units are degrees

Figure 6: Data types used for specifications of the Phase Plane module

A few predicates are defined to describe general properties of the Shuttle, where Boolean predicates
are denoted by a “?” suffix, and the types of the predicate arguments are enclosed in square brackets,
First, the is_deadbanded? predicate determines whether the Shuttle is in a deadbanding state, where
thereare four arguments to the predicate corresponding to the attitude deadband,rate deadband,

current attitude error, and current rate crror represented by their respective types.

is_deadbanded? . pred[attitude_deadband_type ,rate_deadband_type,
attitude_error_type,rate_error_typel

Next, two predicates are defined to check whether rate and attitude errors are in a region where jets

needto be fired to decrease rate error (gencrate positivel rate error).

decrease-rate-error? : predlattitude_deadband_type,rate_deadband_type,
attitude_error_type ,rate_error_type)

increase-rate-error? : predlattitude_deadband_type,rate_deadband_type,
attitude_deadband_type ,rate_deadband_typel

Figure 7 contains an abbreviated version of the top-level specifications. In this case, wiring_phase_plane
refers to the low-level specifications. The referenced states are those depicted in Figure 3.

Based on the specification for the six states, the following high-level axiom was constructed to relate
the attitude and rate deadbands, as well as the rate and attitude errors. Specifically, the axiom asserts

that if the Shuttle is in the deadband regions, thenthere is no need to fire jets to increase or decrease

VAAYAARAA NS AR AN AN Y S ERARE A BANSRVARNRRV NN RARANARAR RV AR NRRA AR A S N5 S ESFEEEEEYS
%
% Module: High-Level specifications Of Properties for Phase Plane Module
%
% The following characterize the 6 states of Shuttle when it is deadbandi ng
Z%Z%Z%%%%i%%%%%,%LA%MZMZLV/VAhV' VNN A A NAA N A AA NI AN AN AN NSNS AN Y I AAN A AN AN AR A AN AN
hi gh-1 evel - phase- pl ane: THEORY
BEG N

USI NG wiring_phase_plane % | ow|evel specifications for phase plane
%
A Al A e o T o L T T o ol T R A A Ak %
%

% No jets fire. Since the rate error is positive, the attitude error will
% grow in a positive direction. (State 1)

no_jets_positive_rate?(att_db,rate_db,att_err,rate_err) : bool =
is_deadbanded?(att_db,rate_db,att_err,rate_err) &
rate-err >0 & att _err >0

%

% Jets are firingto correct positive rotational rate (State 2)

%

jets_fire_correct_pos_attitude_error? (att_db,rate_db,att_err,rate_err) :bool =
NOT (is_deadbanded?(att_db,rate_db,att_err,rate_err)) &
decrease_rate_error?(att_db,rate_db, att_err,rate_err)

%

% Jets stop firing when deadband line is crossed, but a little negative

% rate error is inevitable. (State 3)

%

jets_stop_negative_rate_error?(att_db,rate_db,att_err,rate_err) : bool =
is_deadbanded?(att_db,rate_db,att_err,rate_err) &
rate-err <0

% No jets fire. Wth negative rate error, the attitude error will also
% drift negatively. (State 4)

no_jets_negative_rate?(att_db,rate_db,att_err,rate_err) : bool =
is_deadbanded?(att_db,rate_db,att_err,rate_err) &
rate-err <0 & att_err < O

%

% Jets are firing to correct negative attitude error (State 5)

9,

/]

jets_fire_correct_neg_attitude_error?(att_db,rate_db,att_err,rate_err) : bool =
NOT (is_deadbanded?(att_db,rate_db,att_err,rate_err)) &
increase_rate_error? (att_db,rate_db, att_err,rate_err)

%

% Jets stop firing, but residual positive rate error causes attitude

% error to go positive again and cycle starts over (State 6)

oy

1,

jets_stop_positive_rate_error?(att_db,rate_db,att_err,rate_err) : bool =
is_deadbanded?(att_db,rate_db,att_err,rate_err) &
rate-err >0

end high-Ievel - phase- pl ane

Figure 7: Sample high-level specifications of Phase-Plane

the rate crror.

AXI OM FORALL
(att_db:attitude_deadband_type) , (rate_db:rate_deadband_type),
(att_err:attitude_error_type), (rate_err:rate_error_type):
is_deadbanded?(att_db,rate_db,att_err,rate_err) <=>
NOT (decrease_rate_error?{att_db,rate_db,att_err,rate_err) OR
increase_rate_error?(att_db,rate_db,att_err,rate_err)

)

Finally, amid-level formal specification was outlined to capture critical aspects of functionality and
requirements at a level that would be useful to Shuttle requirements analysts when reviewing proposed
modifications to the module. Codedeveloped from this specification would implement the “Phase
Planc Logic” boxofthclow-level wiring diagram (Iigure 5). The challenge at the mid-level was to omit
extraneous implementation details, yet be precise cnough to capture necessary properties concerning
minimization of fuel usage, thruster firings, and movement about the desired attitude. In constructing
tlicmid-level specificatio ns, several assumption s were made. First, no external acceleration disturbances
were taken into consideration. This assumption means that by taking advantage of symmetry, it is
sufficient to specify only the upper (nonnegative rate error) half of the Phase.Plane diagram, as shown
in Figure 8. Second, the hysteresis region was treated as a coast region. Finally, the specification dots
not explicitly state that the software implementation is enabled by a flag set by the crew, nor docs it
state explicitly that the calculations will be done once for cach axis (roll, pitch, and yaw),

I'n addition to those types already defined in the low-level specification (sece Figure 6), new types
were introduced in the mid-level specifications to represent absolute rate errors, thruster commands,
and thruster acceleration types. IMigure 9 gives the specification of new type declarations and external
inputs.

A few utility functions are defined to simplify the specifications: absolute value, square, and sign.

abs(x: real): real = IF x < 0 THEN -x ELSE x ENDIF
sqr(x: real): non_negative_real = x¥x
sign(x: real): integer = IF x >= 0 then 1 else -1 ENDIF

Next, in Figure 10, we define a few deadbanding functions, where we take advantage of the symmetry
and y represents the vertical axis (absolute value of rate error) and a is the horizontal (attitude error)

axis. The symmetry propertly enables us o generalize the calculations to those in the upper half of the

+ rate error

Rate_ Deadband t Y

Lower_Rate_Deadbdnd \\

\o . -
Lower_Coast_Limit Upper_Attittude_ Limit

+ attitude error
v a d X

DN

Lower_Attitude_Li mit

N Coast Region
:] Hysteresis Region

Figure 8: Upper Half of Phase Plane

deadband region. The adjust-for-symmetry function accounts for symmetry of the phase plane and
returns the new thruster command given the current rate error and thruster command. The calculations
for upper-attitude-limit and lower -attitude-1 imit are a generalization of a portion of the low-
level specifications. These limits determine the bounds of the hysteresis regions, and, as mentioned
previously, area function of the jet firings.

The tail of the coastregion is defined by the rate_deadband above and the lower_rate_deadband
below. The lower _rate_deadband is typicaly O, 6é*rate_deadband[18]. The following specification
gives thelower_rate_deadband as areal and asserts that the lower_rate_deadband is at most the

rate_deadband.

| ower. rate_deadband: real I
rate-de adband_relationship: AXI OM lower_rate_deadband <= rate_deadband

Thelower (left) boundary of thecoast region is defined by the lower_attitude_limit(a function de-
clared below) and attitude -headband. Thelower_coast_limit is typically lower-attitude-limit - 0. 2%a

The specification asserts only that the lower-coast-limit is atmost the lower_attitude_limit.

| ower-coast-linit: real
coast-limt-relationship: AXIOM | over-coast-linit <= |ower-attitude-linit

The primary function control-action returns a thruster command. Thruster hysteresis can be

% TYPE DECLARATI ONS
absolute_rate_error_type: TYPE = non-negative-rea
t hrust er - cormand- t ype: TYPE = {positive-thrust, zero-thrust, negative-thrust)
thruster_accel_type: TYPE = non-negative-real

% External Inputs

% Rate and attitude deadbands characterize the desired bounds.

rate_deadband: rate_deadband_type
attitude_deadband: attitude_deadband_type

% Thrusters generate a constant acceleration during a firing period.
thruster-inpul se: thruster_accel_type
% Rate and attitude errors are deternined by on-board sensors.

rate-error: rate-error-type
attitude-error: attitude_error_type

Figure 9: Variable and tyl~€[leclaratiolls forlni[l-level specification

used to minimize thruster firings due to delays, sensor noise, or movement between state transition
boundaries. At this level of abstraction, the hysteresis zone is treated the same as a “coast” zone.
Figure 11 gives the specification for calculating the thruster commands. First, it must be determined
if the spacecraft is outside the decadbandarca and thrusters should be fired “downward”. Second, it
must be determined whether the spacecraft is outside the deadband arca and thrusters should be fired
“upward’ " 3’ bird, if the spacecraft is within the “coast” zone, then do not fire thrusters. If all the above

cases do not apply, then incorporate thruster hysteresis.

3.3 Construction of OMT Diagrams

Since the original Phase-plane software was not object-oriented, the OMT analysis began with the
source code and implementation-specific wiring diagram of the Phase_Plane module and resulted in
two levels of data flow diagrams. These diagrains assisted in the abstraction process to obtain an
architectural view of the phase plane as it related to the overall DAP system, thus leading to the
construction of the object models. Using the functional and object diagrams in conjunction with the
description of the decadbanding states, we created the dynamic model for the Phase Plane module.

The dynamic model depicts the states between jet firiugs as the Shuttle deadbands. A high-level of

% Calculate coordinates for plotting attitude and rate errors

y: absolute-rate-error-type = abs(rate_error)
x: real = sign(rate_error)*attitude_error

% Because all calculations are done in the upper half of the deadband
% region, the calculated thruster conmand may need to be reversed.

adjust_for_symmetry(t: thruster_command_type,
re: rate-error-type) : thruster-command-type =
IF (t = zero-thrust) OR (sign(re) >= O
THEN t
% re was negative, so thruster commands nust be reversed
ELSE IF t = positive-thrust
THEN negative-thrust
% t was negative-thrust
ELSE positive-thrust
ENDI F
ENDIF
%
% Calculate poundary of hysteresis region based on a functionof jet firings
%
upper-attitude-limit: real
lower-attitude-limit: real

-sqr(y)/(2*thruster_impulse) + attitude_deadband
-sqr(y)/(2*thruster_impulse) - attitude_deadband

Figure 10: Variables and deadbanding functions to adjust for symmetry in phase lane

specifications was generated based on the dynamic model. The object and the functional models offered
one level of abstraction, thusleading to the development of the next layer of formal specifications
(mid-level specifications describing data structures and operations on the data structures).

The remainder of this section describes the OMT diagrams constructed during the reverse engineering

and forma] specification process.

3.3.1 Functional Models

Data flow diagrams (DI'D)) facilitate a high level understanding of systeins and are used in both forward
and reverse engineering. Static analysis of program code provides information that accurately describes
flow of data ina system. Process “bubbles’ denote procedures or functions sofa given system, arrows
represent data flowing from one process to another, and rectangles represent externa entities.

The simplest functional model is a context diagram, or Level O DFD); the Level O DFD for the
Phase-plane module is shown in Figure12, where the entire phase plane module is reduced to a process
bubble, with the external input and output labeled. ThelLevel O DFD closely resembles the structure

of the wiring diagram for Phase.Plane given in IFigure 5.

thruster-hysteresis: thruster-conmmand-type = zero-thrust

control -action: thruster-comand-type =
IF (y > rate_deadband) OR (X > upper_attitude_limit)
THEN adjust_for_symmetry(negative_thrust,rate_error)
ELSE IF (y <lower_rate_deadband) ANO (X <lower_coast_limit)
THEN adjust_for_symmetry(positive_thrust, rate-error)
ELSE IF (Y <=rate_deadband)
AND (lower_rate_deadband <= y)
AND (X <= lower_attitude_limit)
R (x <= lower-attitude-linmt)
AND (lower-coast-limt <= X)
ANO (lower_rate_deadband <= y)
THEN zero-thrust
ELSE thruster-hysteresis
ENDI F
ENDI F
ENDI F

Figure 11: Specification of Function to Calculate Thrust Commands

Figure 13 gives the next level DFD, which shows the diflerent processes that constitute the Phase Plane
module. As shown in this figure, the input variables are used to calculate boundaries for the phase
plane. The boundaries, the attitude deadband and the rate deadband, are supplied to the Phase Plane
module, which calculates thruster commands (jet firings). The thruster commands are then supplied
to theJet_Select module that determines which combination of jets should be used to achieve the

desired thruster effect.

3,3.2 Object Models

Development of the as-built layer of specifications, the DIDs, and the requirements document for
Phase.Plane led to the development of an object model for the Phase Plane.

Figure 14 depicts a high-level object model for the entire DAP, consisting of the State Estimator,
Phase Plane, and the Jet Select c.lasses, corresponding to the diagramn giveninFigure 2. Ilach class
consists of three parts corresponding to the nameof the class, list of attributes,and list of operations,
respectively. The diamond symbol demotes aggregation, where the class above the diamond is said to
consist of the three classes below the diamond. If either attributes or operations are not known (or do
not exist) for a given class, then the corresponding arca is shaded. The Phase Plane class uscs the class

Crew Supplied Information, which representsihe deadband limits that arc usedin the calculation of the

arevious thruster commands

External rate error

Jet Select

Module

thruster

attitude error Phase Plans

Module

Input

commands

Variables

rate deadbands

Figure 12: High Level (0) DFD for Phase_Plane Module

phase plane boundaries.

Figure 14 also contains the object diagram for the Phase Plane class,with attributes rate errvor, attitude
crror, and rotation azis. ‘1"he operation for this class is calculate thrust commands, based on the difference
between the current rate and attitude error values andthose respective limits supplied by the crew.
The filled circle attached to the Phase Plane class, indicates that the 1) Al' contains three phase plane
components, one to caculate different thrust commands for each of thespecific rotational axes: roll,
pitch, and yaw. There are two components for each Phase Plane class, Coast Region and Hysteresis
Region. in the coast region, only the values of the attitude and ratc errors are used to determine
whether ilie Shuttle is still within the deadband limits. In the hysteresis region, however, additional
information, such as fuel usage, sensor noise, and other spacecraft dynamics, is used to calculate thrust

commands,

3.3.3 Dynamic Models

For completeness sake with respect 1o three models of OMT, thissection gives the dynamic models for
the phase plane, which describes the states in which the DAP can be with respect to the Phase-Plane
component. Also included arcthe transitions that take thel) AP from one state to another. A pictorial
diagram of the position of the Shuttle is given in Figure 3. Since the Phase Plane module is an event-

based system, the state transition diagram is straightforward to construct.

previous thruster commands

\
\
rate error
External
Boundaries
. Calculate Boundaries Genera.te
attitude error Control Actions
Input for for Different Regions of
Phase Plane or Diiterent Hegions
Phase Plane
Variables
attitutde deadband
thruster
rate deadbands / commands
|
Jet Select
Module

Figure 13: Level IDFD for Phase-plane Module

Figure 15 gives a statechart depiction of the states through which the Shuttle transitions while it
is deadbanding. The state transitions are in the form of jets terminate (begin) firingand the Shuttle
drifting in (out) of the deadband region.

Note that IFigure 3 depicts the clockwise traversal of the states in which the Shuttle cycles through the
deadband limits. It is aso possible for the Shuttle to traverse the cycle in a counterclockwise fashion,
in which case, the arrows in Figure 15 would be reversed.

Finally,a very high-level view of the states in which the Shuttle canbe is given in Figure 16. Included
in the diagram are the actions or conditions that cause the Shuttle to transition from one state to the
next: jet firings and drift. The rectangle containing “Phase Plane” and the labeled arrows pointing to

the states indicate that the state transitions describe the Phase_Plane module.

4 Lessons Learned

The results from this reverse engineering project have provided several lessons for the overall Space
Shuttle project as well as for future reverse engineering projects. First, in order to obtain high-level
requirements for existing software, it is difficult to obtain the specifications (formal or informal) in

a single step. Instead, several layers of specifications should be developed, starting with the as-built

Turnon
Turn off

1 3

| { i
" Crew Supplied
State Estimator Jet Select Phase Plane Information
- Rate Error
Current Position List of Jets Atttitude Error Uses Rate Deadband
Spacecraft Dynamics Rotation Axis Lowaer Attitiude Limit

I e =

&

il o - 1

Coasl Region | Hysteresis Region

.

L

Figure 14: Object mmodel for DA]

specification, By closely mirroring the programming structure of the existing software, this specification
provides traceability through the different levels of specifications.

Second, formal specification languages and their corresponding reasoning systems provide a framework
for integrating disparate sources of project informationto describe asystematnany levels of detail.
The project information may be documentedin a variety of formats, from different sources, and
subjected to varying levels of forma] review. For this particular project, information was obtained
from implementation-specific wiring diagrams, definitions and instructions from a crew training manual,
source code, informal design notes, and discussions with shuttle software personnel. The information
was analyzed and distilled into specifications and OMT diagrams. The PVS proof system provided a
mechanism for checking the completeness and consistency of the specifications.

‘1'bird, the benefits of ob jcct-oriented analysis can be exploited for reversc-engincering as well as
forward engincering projects. Specifically, object-oricllte.d analysis assists in the understanding of

large, complex systems. Iurthermore,an object-oricmtcd perspective facilitates future modifications

Firing Jets to

correct negative .)]
positive attitude drift

fire jets acceleration

Positive Constant

Accelerating rate Negative Rate

e

4

stop firing stop firing

Constant Negative

Accelerating rate

Positive Rate

Firing Jets to

negative attitude drift correct positive fire jets

acceleration

Figure 15: States representing the clockwise deadbanding of the Shuttle

by providing therequirements analyst and the developer with a high-level, abstract view of system
components.

Finally, a process consisting of the construction of alevel of formal specifications, followed by a set
of corresponding diagrams, is needed to develop severa layers of specifications for an existing system.
The diagrams introduce abstractions that can be used to guide the construction of the next level

of specifications. Furthermore, thethree complementary notations inthe OMT approach enable the

Is deadbanded .
In Deadband Region

Phase Plane Module fire jets

Outside Deadband Region

is not deadbanded

Figure 16: High-level states for Orbiter with respect to the Phase_Plane module

specifier to represent different components of the system using the Imst-suited type of diagram,

5 Conclusions and Future Investigations

Using formal specifications and object-oriented analysis to describe the software that implements the
Phase-Plane module of the Space Shuttle DA]' has demonstrated that these complementary analysis
and development techniques can be used for existing, industrial applications. Constructing the different
levels of specifications, with increasing abstraction, supplemented by the OMT diagrams provided a
means for integrating different types of information regarding the Phase Plane module from disparate
sources. llaving access to the formal specifications and diagrams will facilitate the verification that the
original (critical) requirements or properties are not violated by any future changes to the software.
in addition to facilitating verification tasks, the formal specifications can beused as the basis for
any automated processing of the requirements, including checks for consisten cy and completeness,
interaction with the requirements analyst and other members of the original development team for
the project strongly support the conclusion that the specification construction process isuseful to the
ovcerall software development and m aintenance processes of legacy (safet y-critical) systems [15].

Future investigations will continue to refine the mid-level and high-level specifications and develop
theorems to relate the levels of specifications, We are also investigating the formalization of the OMT
diagraming notation, which will provide a means for using automated techniques for extracting formal
specifications from the OMT diagrams in order to fiat.ilitate the specification process [23]. Furthermore,
extracting the specifications directly from the diagrams will enable us to reason about the completeness
and consistency of the diagrammed system, thus facilitating the requirements analysis, design,and

maint enance phases of software development.

6 Acknowledgements

Several people have provided valuable information and assistance during the course of the project.

Specifically, we would like to thank Rick Covington, David lHamilton, John Kelly, Philip McKinley, and

John Rushby.

Reference herein to any specific commercial product, process, orservice by trade, name, irademark,

manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Govern-

ment or the Jet Propulsion Laboratory, California, Institute of Technology.

References

[1]J. Rushby, “Formal methods and the certification of critical systems,” Technical Report SIU-CSI,-
93-07, SRI International, Computer Science laboratory, 333 Ravenswood Ave., Menlo Park, CA
94025-3493, November 1993. Available via anonymous ftp from f tp, cs1. sri. corn.

[2] N. G. Leveson and C. S. Turner, “An investigation of the Therac-25 Accidents,” IINEE Computer,
pp. 18-41, July 1993.

[3] P.G. Neumann and contributors, “Riskstothe public,>’ in Software I'ngineering Notes, ACM
Specia Interest Croup on Software Fangincering,] 993.

[4] Aeronautic.s and Space Engincering Board National Research Council, An Assessment of Space
Shuttle Flight Software Development Practices. National A cademy Press, 1993.

[5] R. A. Kemmerer, “Integrating Formal Methods into the 1)evelopment Process,” IEEE Software,
pp. 37-50, September 1990.

[6] S. Gerhart, D. Craigen, and T. Ralston, “FExperience with Formmal Methods in Critical Systems
and Regulatory Case St u dics,” IFEKFE Software, vol. 11, January 1994.

[71 J. M. Wing, “A Specifier’s introduction tol'ormal Methods,” IFFEIl; Computer, vol. 23, pp. 8-24,
September 1990.

[8] 11.11. C. Cheng, “Synthesis of Procedural Abstractions from Formal Specifications,” in Proc. of
COMPSAC’91,pp. 149-154, September 1991

[9] E.J. Chikofsky and J. 11. Cross 11, “Reverse Engineering and Design Recovery: A Taxonomy,”
1K EFE Software, January 1990.

[10] E. J Byrne and D. A. Gustafson, “A Software Re-enginecering Process Model ,“ in Proceedings of
COMPSA C’92: Computer Soflwarc and Applications Confercnce, pp. 25-30, September 1992.

[11] B.H. C. Cheng and G. C. Gannod, “Constructing formal spccifications from program code,” in
Proc.of Ybird International Conference on Tools in A rtificial Intelligence, pp. 125-128, November
1991.

[12] G.C. Gannod and 11.110 C. Cheng, “A two-phase approach to reverse engineering using formal
methods,” Lecture Notes in Computer Science, Proc. of Formal Methods in Programming and Their
Applications Conference, vol. 735, pp. 335-348, June 1993.

[13] G. C. Gannod and B. 11. C. Cheng, “Facilitating the maintenance of safety-critical systems,”
Int. J. of Software Engineering and Knowledge Engineering, vol. 4, no. 2, pp. 183-204, 1994.

[14] J. C.Kelly,R. G. Covington, and D. Hamilton, “Results of a forma] mecthods demonstration
project ,“ in Proc. of WESCON (to appear),(Analicim, California), September 1994.

[15] Jet Propulsion Laboratory, Johnson Space Center, and Langley Rescarch Center, “Formal Methods
Demonstration Project for Space Applications:]'base 1 Case Study:STS Orbit DAP Jet Select.”
December 1993.

[16] J, Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W, Lorensen, QObject-Oriented Modeling and
Design, Englewood Clifls, New Jersey: Prentice Hall, 1991.

[17] B. 11. C.Cheng, “Applying formal methods in automated software development,” Journal of
Computer and Software Engineering, vol. 2, no. 2, pp. 137-164, 1994.

[18] “Space Shuttle Orbiter Operational Level C Functional Subsystem Software Requirements:
Guidance Navigation and Control -- Part C Flight Control Orbit DAP,” Tech. Rep. 01-21 edition,
Rock well international, Space Systems Division, February 1991.

[19] S.Beck,“G & C Systems Training Manual: Guidance and Flight Control - Insertion, Onorbit and
Deorbit,” Tech. Rep.1/0/D G&C21 02, Mission Operations Directorate, Training Division, Flight
Training Branch, October 1985.

[20] N.Shankar, S. Owre,and J. Rushby, “The 1'VS specific.ation language and tools,” technical report,
Computer Science laboratory, 333 Ravenswood Ave., Menlo Park, CA 94025 -3493, 1993. Available
via anonymous ftp from ftp, csl. sri, corn.

[21) C. B. Jones, Systematic Software Development Using VDM. Prentice Hall international Series in
Computer Science, Prentice Hall International (UK)Itd., second ed., 1990.

[22] B.H. C. Cheng and B. Auernheimer, “Applying Formal Methods and Object-Oriented Analysis
to the Existing Space Shuttle Software,” ‘TI'echnical Report CPS-94-9, Michigan State University,
Department of Computer Science, A714 Wells Hall, Ilast Lansing, Michigan 48824, February 1994.

[23] R. 11. Bourdeau and 11.11, C. Cheng, “A forma semantics of object models,” Technical Report
MSU-CPS-94-6, Department of Computer Science, Michigan State University, A714 Wells Hall,
Fast Lansing, 48824, January 1994. (submitted to IEEF Trans. on Software Engineering.).

